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Abstract 

In this paper a new type of multi-objective differential evolution employing dynamically tunable mutation 

factor is used to optimally design non-linear vehicle model. In this way, non-dominated sorting algorithm 

with crowding distance criterion are combined to fuziified mutation differential evolution to construct 

multi-objective algorithm to solve the problem. In order to achieve fuzzified mutation factor, two inputs as 

generation number and population diversity and one output as the mutation factor are used in the fuzzy 

inference system. The objective functions optimized simultaneously are namely, vertical acceleration of 

sprung mass, relative displacement between sprung mass and unsprung mass and control force. 

Optimization processes have been done in two bi- and three objective areas. Comparison of the obtained 

results with those in the literature has shown the superiority of the proposed method of this work. Further, it 

has been shown that the results of 3-objective optimization include those of bi-objective one, and therefore 

it gives more optimum options to the designer.   
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1. Introduction 

Suspension system in a typical vehicle is a 

significant part which affects ride comfort and road 

holding capability considerably [1]. Generally 

speaking, there are three types of suspension systems 

which are namely, passive, semi-active and active [1-

3].    

Passive suspension is composed of parallel 

installation of spring and damper between the vehicle 

body (sprung mass) and wheel-axle assembly 

(unsprung mass) [2-3]. Active suspension needs an 

external power source which supplies control force to 

improve the passive components [3-4]. Semi-active 

one is in-between the two aforementioned 

suspensions. This kind of suspension dissipates low 

level of energy [3] and with its varying damping 

properties can achieve a better performance than 

passive one [2]. Active suspensions offer appreciable 

behavior under different road excitations in 

comparison with passive and semi-active ones [2, 4]. 

Therefore several control approaches have been 

proposed by the researchers in the field of the design 

of the active suspension such as, optimal control [5], 

preview control [6], robust control [7-8], neural 

networks [9], back-stepping control [2], fuzzy control 

[10-11] and so forth. 

Model reference is used to have a real suspension 

plant go along it [12]. For this purpose, skyhook 

model has been employed by some authors [13-15] as 

a theoretical reference model. 

Sliding mode control is a useful method to design 

systems which are robust to external disturbances or 

parameters uncertainties. It can provide invariability 

if the bounds of variations are clear and the sliding 

condition is fulfilled [16]. By choosing a proper 

sliding surface the appropriate dynamic performance 

of the system can be achieved [12]. Kim and Ro [17] 

proposed a method based on the combination of 

sliding mode control and skyhook model to design 

active suspensions considering non-linearites. 

It should be noted that finding an exact model of a 

real suspension plant and acceptable estimation of 

road irregularities are complicated tasks. On the other 

hand, in the sliding mode control design, the system 

with uncertainties and disturbances can be stabilized 

if the bounds of them are plain. Since, road 

irregularities may change considerably, achieving 

such bounds seems a difficult task. In order to 

overcome this shortage, in [12] inertial delay control 

method has been used to estimate the non-linearities 
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of suspension system and the outcome of unknown 

road disturbance.         

It is important to notice that there is a good 

competence to employ global optimization methods 

for the design of vehicle suspension system [18]. As a 

matter of fact, there are considerable differences 

between evolutionary algorithms (EAs) and gradient 

based optimization method. The performance of 

gradient based method largely depends on the starting 

point and the direction of the gradient. Therefore, 

there is a high probability to get trapped in the local 

optima [19].  But, in case of EAs, because of the 

stochastic population based nature of them, the search 

direction can be changed in such a way to escape the 

local optima and approach towards the global ones 

[20]. The nature of EAs qualify them to be used in the 

multi-objective optimization problems (MOPs). 

Actually, in MOPs, there are some objective functions 

which conflict together. Therefore, if one of them 

improves the other one deteriorates and vice versa. 

Consequently, there is no unique solution and a set of 

solutions named Pareto front [21].   

There are two principal targets in the optimization 

process by the EAs [22]: 

1. Directing the search process to the true 

Pareto curve 

2. Preventing premature convergence or 

persevering population diversity 

Pareto optimal design of vehicle vibration model 

can achieve an acceptable trade-off between ride 

comfort and road holding capability as can be seen in 

[8, 21, 23-24]. 

In this paper one of the newly developed methods 

of EAs named differential evolution [25-26] is used to 

optimally design the active suspension model [12]. 

DE is a fast and robust algorithm [27-28]. Further, its 

performance is considerably dependent on two 

significant factors, namely mutation and crossover 

[29-31]. 

As reported in the literature, high value of 

mutation factor is effective in global search but low 

value of that may hasten the convergence speed. 

Besides, the larger value of crossover probability may 

increase the diversity of the population but the lower 

one of that improve the local exploitation [31]. So, 

tuning the aforesaid factors can improve the 

performance of DE. In this paper, fuzzy logic [32] is 

employed to dynamically adjust the mutation factor of 

DE. In this way, papers such as [33-34] have been 

done based on the hybrid usage of fuzzy logic and DE 

to dynamically adapt the mutation factor.  

In this paper, a multi-objective differential 

evolution with dynamically adaptable mutation factor 

[34] is employed for Pareto optimal design of an 

active vehicle suspension model [12]. The conflicting 

objective functions have been chosen as vertical 

acceleration of sprung mass, relative displacement 

between sprung mass and unsprung mass, and control 

force.  Furthermore, design variables are chosen as 

the two important effective factors on the control 

procedure which will be described later. Multi-

objective optimization has been done in 2- and 3-

objective areas. Comparison of the obtained results 

with those in the literature proves the superiority of 

the results of this work. 

2. Multi-objective Fuzzified Differential 

Evolution (MFDE) 

In general, multi-objective optimization problems 

(MOPs) can be described as follows [21-22]: 

Finding the best set of design variables      : 
      

     
       

                                                                                                                 
to optimize the set of objective functions       : 

                                                                                                                        
by satisfying m inequality constraints: 

                                                                                                                             

and p equality constraints: 

                                                                                                                             

where         and        . 

It means that a set of objective functions must 

either be minimized or maximized. But, in case of 

maximization by multiplying equation (2) by    , the 

problem can be converted into minimization without 

loss of generality [27]. The respectful reader may 

refer to [21-22] for more information about Pareto 

dominance, Pareto optimality, Pareto set and Pareto 

front. 

In differential evolution (DE), two operators, 

namely, mutation and crossover are exerted to the 

parents, respectively, to produce offsprings as follows 

[34]: 

  
  (    

      
        

 )                                                                                                               

  
       

    (   
     

 )                                                                                          

 in which, n, G, d,        ,    
   and    

   along 

with      
   indicate, number of population, number of 

generation, number of dimension of the search space, 

mutation factor, two randomly selected disparate 

vectors and the vector which is randomly selected 

from the first front of the last generation so far [35], 

respectively.                         
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  {

    
                                                 

                                                       

    
                                                        

                                                                    

(7)                                             

where,    is a number randomly chosen from [0, 

1];    is employed in equation (7) to insure that 

  
    

  and           represents crossover 

probability.  

Parents and offsprings are joined together using 

non-dominated sorting algorithm [36] and crowding 

distance criterion [36]. The results enter to the next 

generation and the optimization process reiterates. 

When algorithm is started by the operator, the 

initial population is generated randomly. So, this 

randomly produced population is used as the parents 

at this time. But, in the next generation, parents are 

the ones who have entered from the previous 

generation. And the process goes on. 

The goal of the non-dominated sorting algorithm 

is to assign rank to each individual of the population 

by comparing it to the others. If the individual 

dominates them or are non-dominated to them, they 

enters to the first rank to form first Pareto front. After 

constructing first rank, the individuals in it are deleted 

from the population and this process repeats for the 

remainder of the population to construct other Pareto 

frontiers.  

The purpose of crowding distance criterion is to 

avoid dense crowding of population in a limited zone 

to conserve the diversity of the population. In order to 

achieve this goal, crowding distance criterion 

appoints a value to each member as the crowding 

criterion to show the average distance of it with 

respect to the others. Each members with higher 

crowding criterion has the higher chance to go to the 

next generation.  

The respectful reader may refer to [36] to find 

more information about non-dominated sorting 

algorithm and crowding distance criterion. 

As discussed earlier, DE is a swift and robust 

algorithm, but is has some drawbacks. Although DE 

is good at global search, it is weak in local search 

[37]. DE has trouble with premature convergence and 

population stagnation [38]. Its performance is mostly 

influenced by its operators (such as mutation factor 

and crossover probability), therefore in different 

conditions it may cause difficulty [39]. 

To overcome the above-mentioned deficiencies, 

fuzzy logic [32] is employed to dynamically adapt the 

mutation factor considering two significant 

parameters mentioned as follows [34]: 

1. Number of generation 

2. Population diversity  

As far as in low number of generation, algorithm 

needs to find the limitation of global optimum 

(optima), large step seems proper. As a result, high 

value of mutation factor may be better. On the other 

hand, in high number of generation, low value of 

mutation factor is good to exploit through the search 

space. Such logic can be used for the population 

diversity, too. Actually, when population packs 

together (low value of diversity), low value of 

mutation factor can be efficacious for fine-tuning 

through the population. Further, when population 

diversity is high, larger value of mutation factor may 

be useful [34].     

Consequently, in this work, fuzzy logic 

considering two significant above-mentioned 

parameters as inputs, and one output as mutation 

factor, is used to improve the performance of the 

differential evolution algorithm. Fuzzy rules 

employed here are depicted in table 1 [34]. 

Briefly speaking, fuzzfied mutation obtained here 

is used in equation (6) instead of conventional one, 

and the remainder of the procedure carries out as 

discussed earlier. This methodology is called multi-

objective fuzzified differential evolution (MFDE) and 

applied to Pareto optimal design of active suspension 

model [12]. The aforementioned methodology is 

presented in figure 1. 

3.  Two degree of freedom nonlinear vehicle 

vibration model 

The vehicle model employed here is depicted in 

figure 2 [12]. The equations of suspension system can 

be shown as: 

   ̈            

   ̈              

where   ,   ,   ,    and   display nominal 

sprung mass, nominal unsprung mass, vertical 

displacement of the sprung mass in relation to its 

static position, vertical displacement of the unsprung 

mass in relation to its static position and control force, 

respectively. 

Furthermore, 

                       

       ̇      ̇  

   

{
                                      

        

  
                  

                                                                                          
   

in which,           ,          and    are 

constants and          is the relative 

displacement between sprung and unsprung mass. 

Besides,   is the gravity acceleration.
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Supposing      ,     ̇ ,       and 

    ̇ , the state equations of motion can be written 

as follows: 

 ̇      

 ̇  
 

  
            

 ̇      

 ̇  
 

  
              

The aforementioned vehicle model is excited by 

two road inputs as: 

Case 1 [12]: 

   

                                         
 

 
      

Case 2 [12]: 

   
                          
                           

These two road profiles are displayed in figures 3-

4, respectively. 

 
 

Fig1. Schematic diagram of the proposed methodology. 

 

 
 

Fig2. Non-linear vehicle model [12].
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Fig3. Road input case 1 [12]. 

 

 
Fig4. Road input case 2 [12]. 

 

Table 1. Fuzzy rule-based system used here [34] 

 

Output of fuzzy system is Mutation 

Factor 

 Diversity  

Low Medium High 

 
Number of 
Generation 

Low (…) Medium (…) High (…) Very High 

          Medium (…) Low (…) Medium (…) High 

             High (…) Very Low (…) Low (…) Medium 

(…):  Mutation Factor must be 
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3.1 The skyhook reference model 

The popular conceptual skyh+ook model is seen 

in figure 5 [12, 17]. It is important to notice that since 

the tire is about ten times stiffer than the suspension 

spring, it is possible to approximate road input with 

the displacement of the unsprung mass (more 

information can be found in [17]). Therefore the 

equation of motion of the skyhook model can be 

written as follows [12]:  

    ̈                    ̇    ̇    
     ̇    

since          : 

    ̈                   ̇       
     ̇     

Whrere     ,    ,   ,    ,   ,   ,     and      

are, namely, skyhook linear damper coefficient, 

sprung mass, unsprung mass, linear spring coefficient, 

linear damper coefficient, vertical displacement of the 

sprung mass of the skyhook reference model in 

relation to its static position and vertical displacement 

of the unsprung mass of the skyhook reference model 

in relation to its static position. 

 

3.2The sliding surface and control design 

 

When the sliding happens, the system precedes the 

skyhook model. By selecting sliding surface, the 

controller is modeled [12]. 

Therefore, the sliding surface is chosen as: 

                                                                                                                                                  
where  

 ̇   
 

   
[                     

      ]  

By using equation (21), reaching phase is deleted. 

Variable   helps the system follow the reference 

model [12].  

Control force,  , is divided into two parts, namely, 

    and    to deal with known terms and uncertainty, 

respectively. 

Differentiating equation (21) gets: 

 ̇  
 

  
           

 

   
[           

               ̇ ]    

By defining lumped uncertainty as          , 

the above equation can be written as: 

 ̇  
 

  
  

 

  
  

 

   
[           

                ]        

 In fact,   is defined based on the uncertainty and 

road disturbance. 

As talked before, 

                                                                                                                                    

in which, 

     
  

   
[                     

      ]           

where   is positive. 

Therefore equation (24) is written as follow: 

 ̇  
 

  

     
 

  

   

It is supposed that: 

     ̂    
in which  ̂ is the estimation of the uncertainty  .  

As a result: 

 ̇      
 

  

  
 

  

 ̂ 

The estimation error can be defined as: 

 ̃     ̂ 

Substituting equation (30) into (29) yields: 

 ̇      
 

  

 ̃ 

The key idea in control is to use the system 

information in the recent past to obtain an estimate of 

the uncertainty and then to use the opposite of it in 

control to negate the effect of the uncertainty. 

In inertial delay control (IDC), the data of the 

recent past of the system is employed to achieve an 

estimation of the uncertainty. Then the opposite of 

that is used in control design to nullify the effect of 

the uncertainty [12].  

 ̃          

in which       is a first order filter defined as: 

      
 

    
    

where   is a positive and small constant. 

By observing equation (31), it can be written as: 

      ̇       ̃   

Substituting equation (32) in (33) and the result in 

(34) gives: 

 ̂  
  

 
  

   

 
∫    

 

 
     

Performing the same procedure for equation (30) 

yields: 

 ̇̃  
 

 
 ̃   ̇    

If  ̇   ,  ̃  converges to zero asymptotically. If 

not, it is ultimately bounded. The respectful reader for 

more information about the IDC-based control and 

the stability proof may refer to [12]. 

 

4. Multi-objective Pareto optimization of a non-

linear vehicle model using multi-objective 

differential evolution with fuzzified mutation 

In this section, multi-objective optimization of a 

non-linear vehicle model [12] based on the 

methodology proposed here has been done. The 
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objective functions used here to be minimized 

simultaneously, are, namely, vertical acceleration of 

sprung mass   ̈  (
 

  ) , relative displacement between 

sprung and unsprung mass         , and control 

force (     ). The design variables are chosen as the 

factors effective on the control procedure design 

indicted by   and      . The optimal design process 

has been done in two areas which are bi- and 3-

objective optimization. The values of fixed 

parameters and the bounds of design variables are 

shown in table 2.  

 

4-1 Bi-objective optimization of the non-linear 

vehicle vibration model 

In this subsection, two different pairs out of three 

possible pairs of objective as   ̈      and   ̈     are 

used to be minimized separately. A population of 80 

individuals with 240 generations are employed to 

optimally design the vehicle model using a crossover 

probability of 0.9 and the fuzzified adaptable 

mutation factor discussed earlier [34] in two 

optimization processes separately for two road 

profiles. The obtained Pareto fronts are shown in 

figures 6-9. As readily seen through these figures, 

improving one of the objective functions leads to 

deteriorating the other one and vice versa. It means 

that choosing a set of objectives based on the Pareto 

fronts equals to the best possible couple of them. On 

the other hand, the couple which do not follow the 

mentioned rule, locate the point inferior to the Pareto 

fronts. Such locations are in the top/right sides of the 

figures 6-9. 

In the Pareto font curves, points   ,       
  and   

  

are the points with the significant optimal concept. As 

easily seen in figures 6 and 8, points    and   
   show 

considerable improvements in  ̈  in comparison with 

   and   
  (the points having lowest values in   ), but 

negligible deterioration in   . The same comparison 

between    and   
  with   and   , in figures 7 and 9, 

shows worthwhile improvements in control force, but 

trivial increase in other objective. Therefore, points 

  ,       
  and   

  are trade-off points in the their 

related Pareto frontiers. Further, point   (suggested 

by [12]) locate in the top/right sides (inferior area) of 

figures 6, 8-9 and the Pareto fronts are superior to it. 

Besides in figure 7, the Pareto front includes point  , 

and as a result this point is non-dominated to the 

others in the curve. The values of objective functions 

and their associated design variables of points    
  ,  ,   ,   

 ,   
 ,   ,       

 ,   
  and   are depicted in 

table 3. 

Briefly, bi-objective optimization offers several 

optimal solutions which can be used by the designer. 

But, more optimal choices can be obtained by the 3-

objective optimization simultaneously described in 

the next subsection. 

 

 

 

 
 

Fig5. Conceptual skyhook model [12]. 
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Fig6. Pareto front of vertical sprung mass acceleration and relative displacement between sprung and unspring mass resulted by bi-objective 

optimization for case 1. 

 
Fig7. Pareto front of vertical sprung mass acceleration and control force resulted by bi-objective optimization for case 1. 

 
Fig8. Pareto front of vertical sprung mass acceleration and relative displacement between sprung and unspring mass resulted by bi-objective 

optimization for case 2.
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Fig9. Pareto front of vertical sprung mass acceleration and control force resulted by bi-objective optimization for case 2. 

Table 2. The values of fixed parameters and the bounds of design variables 

                                              

Suspension 

system's 

parameter 

        ---- ---- ---- ---- ---- ---- ---- 

Skyhook 

model's 

parameter 

---- ---- ---- ---- ---- ---- ----      ---- ---- ---- 

Design variable ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ----   

Parameter 

value 

240 

    

50 

   

12394 

    

-73696 

     
 

3170400 

     

150000 

     
 

1385.4 

     
 

524.28 

       
 

240 

   

15000 

     
 

1860 

     
 

30000 

     
 

9.81    

    

---- ---- 

Lower bound ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 0 0   

Upper bound ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- ---- 1000 1    

4-2 three-objective optimization of the non-linear 

vehicle vibration model 

In this subsection, a 3-objective optimization 

instead of two separate bi-objective optimization (for 

each road input) has been done. All of the three 

objective are used together to be optimized 

simultaneously. A population of 80 individuals with 

240 generations are adopted to optimally design the 

vehicle model using a crossover probability of 0.9 and 

the fuzzified adaptable mutation factor described 

earlier [34] for each road profile. 

Pareto fronts for each road inputs are depicted in 

figures 10-13. It seems that some points are in these 

figures which dominate others. But, when observed 

from the view of all three objective, all optimum 

points are non-dominated to each other. It can be 

readily seen through the figures that the results of 3-

objective subsume the ones of bi-objective 

optimizations. In fact, the Pareto fronts achieved by 

bi-objective optimizations form the bounding lines of 

each planes obtained by the 3-objective optimization 

in such a way that no solution exits superior to such 

borderlines. 

It is time to propose a point as the trade-off one 

from the view of all the objective functions. Points   

and    are chosen as the trade-offs amongst all the 

optimum points due to using control force in the 

suspension system. As a matter of fact, employing 

such force helps suspension system have proper  ̈ . 

Therefore, reaching a solution having lowest value of  

 ̈  considering the control force may play the role of 

the trade-off design point. Of course, there are several 
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points in each plane with different characteristics that 

can be used by the designer in various conditions. As 

a matter of fact, such kind of multi-objective 

optimization give a wide range of area of optimum 

modeling to the designer to use for the proper 

condition.   

Time response behaviors of the points  ,    and   

are presented in figures 14-15. Based on the table 3, it 

can be found that the area covered under the curves 

resulted by   and    are lower than the one of point 

 . This fact shows the improvement in the values of 

vertical acceleration of sprung mass by using 

methodology of this work.  

Whatever discussed earlier, in this and former 

subsection, proves the superiority of the proposed 

method of this work. In fact, the results obtained here 

would not have been found without the use of Pareto 

optimization procedure of this work.  

Table 3. values of the objective functions and their associated values of design variables of optimum points of this work / the one of [12] 

           ̈  (
 

  
)               

  
18.24123 0.054834 1.39266 0.203785 4291.759 

   
10.09178 0.099094 0.543047 0.22691 4054.901 

   
3.024461 0.340162 2.454501 0.195222 4154.106 

   
0.025427 0.999517 1.399673 0.204075 4286.258 

  
  

0.91846 0.999525 0.999312 0.204473 3532.692 

  
  

0.503078 0.999139 1.01779 0.204785 3526.25 

   
12.83386 0.061148 1.425465 0.202871 4299.880 

   
66.72541 0.075006 1.466695 0.204431 4263.94 

  
  

7.951234 0.119386 0.548142 0.22565 4029.499 

  
  

7.878231 0.136905 0.553127 0.225080 4017.729 

   
200 0.01 1.49858 0.204526 4247.061 

    
200 0.01 0.567434 0.228246 4080.086 

  : Point   in case 1,    : Point   in case 2. 

 

 
 

Fig10. Pareto front of vertical sprung mass acceleration and relative displacement between sprung and unsprung mass resulted by 3-

objective optimization for case 1.
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Fig11. Pareto front of vertical sprung mass acceleration and control force resulted by 3-objective optimization for case 1. 

 
 

Fig12.  Pareto front of vertical sprung mass acceleration and relative displacement between sprung and unsprung mass resulted by 3-

objective optimization for case 2. 

 

 
Fig13.  Pareto front of vertical sprung mass acceleration and control force resulted by 3-objective optimization for case 2. 
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Fig14. Comparison of time response behaviors of vertical sprung mass acceleration obtained by point   (this work) and   [12]. 

 
Fig15. Comparison of time response behaviors of vertical sprung mass acceleration obtained by point    (this work) and   [12]. 

 

5- Conclusion 

 

A new version of multi-objective differential 

evolution with fuzzified mutation is applied to 

optimally design non-linear vehicle model excited by 

two different road profiles. Fuzzy inference system is 

employed to dynamically adapt the mutation factor 

using generation number and population diversity as 

inputs and mutation factor as output to construct nine-

rule fuzzy model. Three objective functions are 

chosen to be optimized simultaneously, and are, 

namely, vertical sprung mass acceleration, relative 

displacement between sprung and unsprang mass and 

control force. The optimization processes have been 

done both in 2- and 3-objective area in terms of 

Pareto frontiers. Some important trade-offs have been 

found through the Pareto optimal design. Further, it 

has been shown that the results of 3-objectve 

optimization contains those of 2-objectve. In fact the 

results of bi-objective optimization locate on the 

boundary of the ones of 3-objective optimization, and 

it can provide more optimal choices for the designers. 

Further, comparison of the results of this work with 

those in the in the literature has been shown the 

superiority of the proposed methodology of this 

paper. 
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